

Directions:

* Show your thought process (commonly said as "show your work") when solving each problem for full credit.
* If you do not know how to solve a problem, try your best and/or explain in English what you would do.
* Good luck!

| Problem | Score |
| :---: | :---: | Points | 1 | 10 |
| :---: | :---: |
| 2 | 10 |
| 3 | 10 |
| 4 | 10 |
| 5 | 10 |
| 6 | 10 |

1. Short answer questions:
(a) Given three functions

$$
f(x)=\sqrt{x-2}, \quad g(x)=\frac{2 x}{3 x+1}, \quad h(x)=x^{4}
$$

find the composition $g \circ f \circ h$.
$\left(g \circ f(h)(x)=g(f(h(x)))=g\left(f\left(x^{4}\right)\right)=g\left(\sqrt{x^{4}-2}\right)=\frac{2 \sqrt{x^{4}-2}}{3 \sqrt{x^{4}-2}+1}\right.$
(b) Given a polynomial $f(x)=(x-1)(x-2)(x-3)(x-4)(x-5)$, should $f(4.5)$ be positive or negative and why?

$$
\begin{aligned}
f(4.5) & =(4.5-1) \cdot(4.5-2) \cdot(4 \cdot 5-3) \cdot(4 \cdot 5-4) \cdot(4 \cdot 5 \cdot 5) \\
& =+\cdots++\cdot \\
& =-
\end{aligned}
$$

(c) Find a degree four polynomial with zeros $i \sqrt{3}$ and $5 i$.

$$
P(x)=(x-i \sqrt{3})(x+i \sqrt{3})(x-5 i)(x+5 i)
$$

(d) Given a base function $f(x)=\sqrt{x}$ and two transformed functions

$$
g(x)=\sqrt{x-2} \quad h(x)=\sqrt{\frac{1}{2} x-2}
$$

do both $g(x)$ and $h(x)$ have the same horizontal shift from $f(x)$? If not, state both of the horizontal shifts of $g(x)$ and $h(x)$.
/Vo. $h(x)=\sqrt{\frac{1}{2}(x-4)}$
$g(x)$ is shifted 2 units to the right from $f(x)$
$h(x)$ is shifted 4 units to the right form $f(x)$
2. Suppose $f(x)=x^{2}-x$.
(a) What is the domain of $f(x)$?

$$
\mathbb{R} \quad \circ \quad(-\infty, \infty)
$$

(b) Find a complete factorization of $f(x)$.

$$
f(x)=x^{2}-x=x \cdot(x-1)
$$

(c) Calculate and fully expand + simplify the expression $\frac{f(x+h)-f(x)}{h}$.

$$
\begin{array}{r}
\frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{2}-(x+h)-\left(x^{2}-x\right)}{h} \\
\text { expand }=\frac{\left(x^{2}+2 x h+h^{2}-x-h-x^{2}+x\right.}{h}
\end{array}
$$

$$
\begin{aligned}
& =\frac{2 x h+h^{2}-h}{h} \\
& =\frac{h \cdot(2 x+h-1)}{h} \\
\text { CF } & =\frac{2 x+h-1}{}=5
\end{aligned}
$$

3. Given the polynomial $P(x)=x^{4}+4 x^{3}+5 x^{2}+4 x+4$:
(a) What is the average rate of change of $P(x)$ on $[0,1]$?

$$
\begin{aligned}
\frac{P(1)-P(0)}{1-0} & =\frac{1+4+5+4+4-(0+0+0+0+4)}{1} \\
& =\frac{18-4}{1}=14
\end{aligned}
$$

(b) Is $P(x)$ even, odd, or neither? Full credit requires using the definition of even/odd.

$$
\begin{aligned}
P(-x) & =(-x)^{4}+4(-x)^{3}+5(-x)^{2}+4(-x)+4 \\
& =x^{4} \underbrace{-4 x^{3}}_{\text {only two toms flipper sign }}+5 x^{2} \underbrace{-4 x}+4
\end{aligned}
$$

no way for $P(-x)$ to equal $P(x)$ or $-P(x)$. neither
(c) $x=-2$ is a zero of multiplicity two for $P(x)$. Use this information to find a complete factorization of $P(x)$.
$x=-2$ is multiplicity 2 means $(x-(-2))^{2}=(x+2)^{2}$ is a factor expounding $(x+2)^{2}$ gives $x^{2}+4 x+4$. Long divide:

$$
\begin{aligned}
& x^{2}+4 x+4 \begin{array}{c}
x^{2}+1 \\
\frac{x^{4}+4 x^{3}+5 x^{2}+4 x+4}{\vdots} \\
0+4 x^{3}+4 x^{2}+x^{2}+4 x+4
\end{array} \\
& \frac{x^{2}+4 x+4}{\underset{R(x)}{0}}
\end{aligned}
$$

By division algorithm $x^{4}+4 x^{3}+5 x^{2}+4 x+4=\frac{\left(x^{2}+4 x+4\right)}{D(x)} \frac{\left(x^{2}+1\right)}{Q(x)}+\underset{R(x)}{0}$

$$
=(x+2)^{2}\left(x^{2}+1\right)
$$

Factor $x^{2}+1$ using quadratic formal: $a=1, b=0, c=1$

$$
x=\frac{-0 \pm \sqrt{0^{2}-4 \cdot 1 \cdot 1}}{2 \cdot 1}=\frac{ \pm \sqrt{-4}}{2}=\frac{ \pm i \sqrt{4}}{2}=\frac{ \pm 2_{i}}{2}= \pm \frac{\text { frae }}{2}=i
$$

So i and $-i$ ore zeros of $x^{2}+1$, mennlag $(x-i)(x-(-i))=(x-i)(x+i)=x^{2}+1$
\therefore a complete factorization is $(x+2)^{2}(x-i)(x+i)$
4. Sketch an accurate graph of the polynomial

$$
P(x)=x^{3}-x^{2}-6 x
$$

using the four step process.

(1) zeros: factor $P(x)=x^{3}-x^{2}-6 x$

$$
\begin{aligned}
P(x) & =x^{3}-x^{2}-6 x \\
& =x\left(x^{2}-x-6\right) \\
& =x(x-3)(x+2)
\end{aligned}
$$

$$
\begin{aligned}
P(-3) & =(-3) \cdot(-3-3) \cdot(-3+2)=(-3)(-6)(-1) \\
& =-18
\end{aligned}
$$

$$
P(-1)=(-1)(-1-3)(-1+2)=(-1)(-4)(1)=4
$$

$$
P(1)=1 \cdot(1-3)(1+2)=1 \cdot(-2) \cdot 3=-6
$$

$$
P(4)=4 \cdot(4-3) \cdot(4+2)=4 \cdot 1 \cdot 6=24
$$

(3) End behavior: I coding term x^{3}
zeros are $x=0,3,-2$
(2) Diagram / IVT

$$
\begin{aligned}
& y \rightarrow \infty \text { as } x \rightarrow \infty \\
& y \rightarrow-\infty \text { as } x \rightarrow-\infty
\end{aligned}
$$

(4) graph

x	-3	-2	-1	0	1	3	4
$P(x)$	-18	0	4	0	-6	0	24

5. Given the function

(1) 1-1 from picture on right
(2) $y=4-x^{2}, y \leq 4$
(3) $x^{2}=4-y, \quad y \leq 4$

$$
x= \pm \sqrt{4-y}, y \leq 4
$$

choose $x=+\sqrt{4-y}$ since $x \geq 0$ and square root outputs positive numbers.

(b) Use the Inverse Function Property to verify your result of f^{-1} is actually the inverse of $f(x)$.

$$
\begin{aligned}
\left(f \circ f^{-1} f(x)\right. & =f\left(f^{-1}(x)\right) \\
& =f(\sqrt{4-x}) \\
& =4-(\sqrt{4-x})^{2} \\
& =4-(4-x) \\
& =4-4+x \\
& =x
\end{aligned}
$$

6. Given

$$
F(x)=\sqrt{x-1} \quad G(x)=-\left(x^{2}-1\right)
$$

(a) Find the domain of $F(x)$.

$$
\begin{aligned}
& F(x)=\sqrt{\frac{x-1}{\sqrt{x}}} \\
& \text { pleas: }<0
\end{aligned}
$$

whats left

$$
\begin{aligned}
& \text { problems: } \quad \sqrt{x-1<0} \\
& (\text { remonfom } R) \quad x<1
\end{aligned}
$$

(b) Decompose $F(x)$ into two functions f and g where $f \circ g=F$. You are not allowed to choose $f(x)=x$ or $g(x)=x$.

$$
\begin{aligned}
& f(x)=\sqrt{x}, g(x)=x-1 \\
& (f \circ g)(x)=f(g(x))=f(x-1)=\sqrt{x-1}=F(x)
\end{aligned}
$$

(c) Calculate $(F \circ G)(0)$.

$$
\left.\begin{array}{rl}
(F \circ G)(0) & =F(G(0)),-7
\end{array}\right)=F(1)
$$

(d) Find the function $F \circ G$ and explain why the domain of this function is the single number $x=0$.

$$
\begin{aligned}
(F \circ G)(x) & =F(G(x)) \\
& =F\left(-\left(x^{2}-1\right)\right) \\
& =F\left(-x^{2}+1\right) \\
& =\sqrt{-x^{2}+1-1} \\
& =\sqrt{-x^{2}}
\end{aligned}
$$

